Model Prediksi Nilai Panas Tinggi Biobriket Daun Kesambi (Schleichera oleosa) Torrefied

  • Jemmy Jonson Sula Dethan Universitas Kristen Artha Wacana
  • Arlindo U. S. Kette Fakultas Teknologi Pertanian, Universitas Kristen Artha Wacana
Biobriket, Daun kesambi, Nilai kalor, Model prediksi, Torefaksi

Abstrak

Biomassa, khususnya dalam bentuk biobriket, muncul sebagai solusi menjanjikan yang menawarkan pilihan energi terbarukan dan ramah lingkungan. Melalui analisis dan eksperimen menyeluruh, telah ditunjukkan bahwa nilai kalor biobriket dipengaruhi secara signifikan oleh variabel seperti rasio perekat dan ukuran bubuk. Model statistik telah dikembangkan untuk memprediksi secara akurat nilai kalor tinggi (HHV) biobriket berdasarkan variabel-variabel ini, sehingga memberikan wawasan berharga untuk mengoptimalkan proses produksinya. Dengan menyempurnakan rasio perekat dan ukuran bubuk, efisiensi energi dan kelayakan ekonomi produksi biobriket dapat ditingkatkan. Lebih jauh lagi, studi ini menggarisbawahi pentingnya biomassa sebagai sumber energi terbarukan yang mampu mengurangi emisi gas rumah kaca dan mengurangi ketergantungan pada bahan bakar fosil yang jumlahnya terbatas. Dengan memanfaatkan biomassa melalui cara-cara inovatif, seperti melalui produksi  biobriket, masa depan energi yang lebih berkelanjutan dapat diciptakan. Studi ini berkontribusi untuk memajukan pemahaman kita tentang biomassa sebagai alternatif energi yang layak dan menyoroti pentingnya inovasi berkelanjutan dalam mencapai solusi energi berkelanjutan. Dengan memanfaatkan potensi biomassa, kita dapat membuka jalan menuju masa depan yang lebih bersih dan hijau untuk generasi mendatang

Download

Belum ada

Referensi

Acar, S., & Ayanoglu, A. (2012). Determination of higher heating values (HHVs) of biomass fuels. Energy Education Science and Technology Part A: Energy Science and Research, 28(2).
Ahiduzzaman, M., & Sadrul Islam, A. K. M. (2016). Assessment of rice husk briquette fuel use as an alternative source of woodfuel. International Journal of Renewable Energy Research, 6(4). https://doi.org/10.20508/ijrer.v6i4.4854.g6948
Amen, R., Hameed, J., Albashar, G., Kamran, H. W., Hassan Shah, M. U., Zaman, M. K. U., Mukhtar, A., Saqib, S., Ch, S. I., Ibrahim, M., Ullah, S., Al-Sehemi, A. G., Ahmad, S. R., Klemeš, J. J., Bokhari, A., & Asif, S. (2021). Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: A sustainable case study. Journal of Cleaner Production, 287. https://doi.org/10.1016/j.jclepro.2020.125575
Azni, M. A., Md Khalid, R., Hasran, U. A., & Kamarudin, S. K. (2023). Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. In Sustainability (Switzerland) (Vol. 15, Issue 5). https://doi.org/10.3390/su15054033
Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: Practical design and theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/C2016-0-04056-1
Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F. E., El Ouinani, A., Sahibed-Dine, A., Bentiss, F., Jama, C., & Bensitel, M. (2017). Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste. Waste Management, 61. https://doi.org/10.1016/j.wasman.2016.11.012
Callejón-Ferre, A. J., López-Martínez, J. A., & López-Martínez, J. A. (2009). Briquettes of plant remains from the greenhouses of Almería (Spain). Spanish Journal of Agricultural Research, 7(3). https://doi.org/10.5424/sjar/2009073-437
Costa, E. V. S., Pereira, M. P. de C. F., da Silva, C. M. S., Pereira, B. L. C., Rocha, M. F. V., & Carneiro, A. de C. O. (2019). Torrefied briquettes of sugar cane bagasse and eucalyptus. Revista Arvore, 43(1). https://doi.org/10.1590/1806-90882019000100001
Dashti, A., Noushabadi, A. S., Asadi, J., Raji, M., Chofreh, A. G., Klemeš, J. J., & Mohammadi, A. H. (2021). Review of higher heating value of municipal solid waste based on analysis and smart modelling. Renewable and Sustainable Energy Reviews, 151. https://doi.org/10.1016/j.rser.2021.111591
Dethan, J. J. S., Haba Bunga, F. J., Ledo, M. E. S., & Abineno, J. C. (2024). Characteristics of Residence Time of the Torrefaction Process on the Results of Pruning Kesambi Trees. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 13(1), 102. https://doi.org/10.23960/jtep-l.v13i1.102-113
Dethan, J., & Lalel, H. (2024). Optimization of Particle Size of Torrefied Kesambi Leaf and Binder Ratio on the Quality of Biobriquettes. Journal of Sustainable Development of Energy, Water and Environment Systems, 12(1), 1–21. https://doi.org/10.13044/j.sdewes.d12.0490
Dimyati, T. T., & Kurniasih, D. (2020). Financial analysis of establishing micro industry of corn cobs briquettes in Majalengka Regency. International Journal of Renewable Energy Research, 10(1). https://doi.org/10.20508/ijrer.v10i1.10382.g7856
Dirgantara, M., Kristian, N., Karelius, & Karelius. (2019). Evaluasi Prediksi Nilai Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Ultimate. Jurnal Jejaring Matematika Dan Sains, 1(2). https://doi.org/10.36873/jjms.v1i2.218
El Hanandeh, A., Albalasmeh, A., & Gharaibeh, M. (2021). Effect of pyrolysis temperature and biomass particle size on the heating value of biocoal and optimization using response surface methodology. Biomass and Bioenergy, 151. https://doi.org/10.1016/j.biombioe.2021.106163
Esteves, B., Sen, U., & Pereira, H. (2023). Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. In Energies (Vol. 16, Issue 10). https://doi.org/10.3390/en16104226
Ganesapillai, M., Mehta, R., Tiwari, A., Sinha, A., Bakshi, H. S., Chellappa, V., & Drewnowski, J. (2023). Waste to energy: A review of biochar production with emphasis on mathematical modelling and its applications. In Heliyon (Vol. 9, Issue 4). https://doi.org/10.1016/j.heliyon.2023.e14873
Górnicki, K., Kaleta, A., & Winiczenko, R. (2020). Estimating the higher heating value of forest and agricultural biomass. E3S Web of Conferences, 154. https://doi.org/10.1051/e3sconf/202015401002
Hajad, M., Harianto, S., Karyadi, J. N. W., Mastur, A. I., Prayoga, M. K., Khomaen, H. S., Faustine, E., Nainggolan, I., Majid, F. A., Syahputra, M. H., & Adipradana, G. A. (2023). Potential and Characteristic of Biomass Pellet from Tea Plantation Wastes as Renewable Energy Alternative. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 12(3). https://doi.org/10.23960/jtep-l.v12i3.619-631
Hwangdee, P., Jansiri, C., Sudajan, S., & Laloon, K. (2021). Physical Characteristics and Energy Content of Biomass Charcoal Powder. International Journal of Renewable Energy Research, 11(1). https://doi.org/10.20508/ijrer.v11i1.11658.g8122
Kartal, F., & Özveren, U. (2022). Prediction of torrefied biomass properties from raw biomass. Renewable Energy, 182. https://doi.org/10.1016/j.renene.2021.10.042
Kette, A. U. S., Dethan, J. J. S., Bunga, F. J. H., Banfatin, N., & Purwadi, R. (2024). Adding adhesive on making of waste bricket of eucalyptus oil refining. THE 7TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: The 15th Asian Congress on Biotechnology in Conjunction with the 7th International Symposium on Biomedical Engineering (ACB-ISBE 2022), 3080. https://doi.org/10.1063/5.0195318
Kieseler, S., Neubauer, Y., & Zobel, N. (2013). Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy and Fuels, 27(2). https://doi.org/10.1021/ef301752d
Kujawska, J., Kulisz, M., Oleszczuk, P., & Cel, W. (2023). Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters. Energies, 16(10). https://doi.org/10.3390/en16104162
Majumder, A. K., Jain, R., Banerjee, P., & Barnwal, J. P. (2008). Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel, 87(13–14). https://doi.org/10.1016/j.fuel.2008.04.008
Mari Selvam, S., & Balasubramanian, P. (2023). Influence of Biomass Composition and Microwave Pyrolysis Conditions on Biochar Yield and its Properties: a Machine Learning Approach. Bioenergy Research, 16(1). https://doi.org/10.1007/s12155-022-10447-9
Musabbikhah, Saptoadi, H., Subarmono, & Wibisono, M. A. (2019). Analysis and Selection of the Best Model of Biomass Briquette Based on Calorific Value. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012270
Nhuchhen, D. R., & Abdul Salam, P. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99. https://doi.org/10.1016/j.fuel.2012.04.015
Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5). https://doi.org/10.1016/j.fuel.2004.10.010
Parnthong, J., Nualyai, S., Kraithong, W., Jiratanachotikul, A., Khemthong, P., Faungnawakij, K., & Kuboon, S. (2022). Higher heating value prediction of hydrochar from sugarcane leaf and giant leucaena wood during hydrothermal carbonization process. Journal of Environmental Chemical Engineering, 10(6). https://doi.org/10.1016/j.jece.2022.108529
Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. In International Journal of Environmental Research and Public Health (Vol. 15, Issue 1). https://doi.org/10.3390/ijerph15010016
Pratiwi, Y., Waluyo, J., Widyawidura, W., & Aridito, M. N. (2019). Development of jackfruit peel waste as biomass energy: Case study for traditional food center in Yogyakarta. International Journal of Renewable Energy Research, 9(4). https://doi.org/10.20508/ijrer.v9i4.10131.g7827
Rani, I. T., Wahyu, H., Febryano, I. G., Iryani, D. A., & ... (2020). Effect of torefaction on the chemical properties of empty fruit bunch pellets. … Teknik Pertanian …, 9(1).
Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. In Heliyon (Vol. 8, Issue 2). https://doi.org/10.1016/j.heliyon.2022.e08905
Santos, F. D., Ferreira, P. L., & Pedersen, J. S. T. (2022). The Climate Change Challenge: A Review of the Barriers and Solutions to Deliver a Paris Solution. In Climate (Vol. 10, Issue 5). https://doi.org/10.3390/cli10050075
Sharma Timilsina, M., Sen, S., Uprety, B., Patel, V. B., Sharma, P., & Sheth, P. N. (2024). Prediction of HHV of fuel by Machine learning Algorithm: Interpretability analysis using Shapley Additive Explanations (SHAP). Fuel, 357. https://doi.org/10.1016/j.fuel.2023.129573
Sivabalan, K., Hassan, S., Ya, H., & Pasupuleti, J. (2021). A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. Journal of Physics: Conference Series, 1831(1). https://doi.org/10.1088/1742-6596/1831/1/012033
Syguła, E., Świechowski, K., Stępień, P., Koziel, J. A., & Białowiec, A. (2021). The prediction of calorific value of carbonized solid fuel produced from refuse-derived fuel in the low-temperature pyrolysis in co2. Materials, 14(1). https://doi.org/10.3390/ma14010049
Tan, P., Zhang, C., Xia, J., Fang, Q. Y., & Chen, G. (2015). Estimation of higher heating value of coal based on proximate analysis using support vector regression. Fuel Processing Technology, 138. https://doi.org/10.1016/j.fuproc.2015.06.013
Yin, C. Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3). https://doi.org/10.1016/j.fuel.2010.11.031
Diterbitkan sejak
15-06-2024
Rekomendasi Sitasi
Dethan, J., & Kette, A. (2024). Model Prediksi Nilai Panas Tinggi Biobriket Daun Kesambi (Schleichera oleosa) Torrefied. Jurnal Pertanian Terpadu, 12(1), 23-34. https://doi.org/10.36084/jpt.v12i1.543